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Abstract. We investigate the possibility of inducing ferromagnetic order in 4d and 5d late transition metals
through crystal symmetry change. First principles, self-consistent density functional theory calculations,
with spin-orbit coupling included, performed at 0 K show that ferromagnetism occurs in the bulk of Rh
and Pd at the optimum lattice constant if Rh is in the bcc and Pd in the hcp/dhcp phase. The ferromagnetic
order originates in the d-band occupancy of Rh or Pd which locates the Fermi energy at the top of the
highest peak of the respective (paramagnetic) density of states induced by the bcc or hcp/dhcp structure.
This peak in the density of states is caused by flat bands which lie at the surface of the respective Brillouin
zone. For a bcc crystal these flat bands have the eg character and are positioned at the surface of the bcc
Brillouin zone along the N-P line. The origin of the flatness of the bands was found to be the translation
symmetry of the cubic lattice which causes the bands with the eg character to be narrow along the k-lines
whose k-vector directions are furthest off the directions to which the orbitals of the eg symmetry point. Due
to the d-band occupancy of Rh these flat bands lie in the paramagnetic state at the Fermi energy, whereas
in the ferromagnetic state they exhibit the largest energetic split. This indicates that a smaller degree
of orbital overlap narrows electronic bands enhancing the tendency of the system for ferromagnetic band
split. For the hcp/dhcp structure the states contributing to the high density of para-magnetic states at the
Fermi level of Pd lie in the vicinity of the M-L line of the hcp Brillouin zone boundary, which possesses a
high number of symmetry (M and L) points. Moreover, the M-L line is aligned with the stacking sequence
direction ([0001]) which is furthest off the densest-packed atomic chain direction of an hcp-crystal and,
consequently, the weakest-bond direction in the crystal. This makes the narrow bands along the M-L line
flat. The instability of the bcc and the meta-stability of the hcp crystal phase modifications for metals
with native close-packed crystal structures is subsequently analysed in order to find whether they can be
grown as films on suitable substrates.

PACS. 61.50.Ah Theory of crystal structure, crystal symmetry; calculations and modeling – 71.15.Mb
Density functional theory, local density approximation, gradient and other corrections – 71.20.Be Transition
metals and alloys – 75.50.Cc Other ferromagnetic metals and alloys

1 Introduction

A particularly well studied physical property of bulk tran-
sition metals that reflects peculiarities of their electronic
structure, is the ferromagnetic order of the elemental
3d metals Fe, Co and Ni. Except Cr, which is known
to order antiferromagnetically, and Mn, which displays a
non-collinear order of its spin moments, the other 3d met-
als have a spin symmetric electronic structure. A crite-
rion which predicts the existence of ferromagnetic order
on the grounds of non-ferromagnetic (i.e. paramagnetic)
properties is the so-called Stoner criterion. The Stoner cri-
terion [1] for ferromagnetism: I ·N(EF ) > 1, where I is

a e-mail: osuchk@science.unisa.ac.za

the Stoner parameter and N(EF ) is the density of states
(DOS) at the Fermi-level, tests whether the potential en-
ergy gain through the exchange interaction by establishing
ferromagnetic spin alignment overcomes the energy cost
of the rearrangement of the band occupation [2, 3]. Thus,
ferromagnetism basically occurs because of the spatial lo-
calisation of d-orbitals at the top of the d-band. This lo-
calisation produces both a large density of states and a
relative maximum of the exchange integral I. The prod-
uct I ·N(EF ) is large enough for ferromagnetism to occur
at the end of the 3d series, but not for the 4d and 5d se-
ries because the 4d and 5d wave functions extend further
away from the nucleus (i.e. the 4d function possesses one
more node than the 3d function). This implies a larger
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interaction between the neighbour atoms in 4d and 5d
metals, a larger bandwidth and thus a smaller density of
states preventing the 4d and 5d metals from developing
ferromagnetic order [1–4].

In compounds magnetism is less common in 4d and 5d
than in 3d and 4f materials because the on-site Stoner and
Coulomb parameters are lower, while the band widths W
tend to be larger for the former materials due to the more
extended nature of the 4d and 5d orbitals relative to the
3d ones. However, when it does occur it may be more
interesting than typical 3d magnetism. In particular, the
more extended active orbitals make it much more likely for
itinerant electrons to play an important role in such mate-
rials, leading to interesting new phenomena such as strong
coupling to lattice degrees of freedom. Furthermore, much
stronger spin-orbit effects may be expected compared with
3d systems. They may manifest themselves in unusually
strong magneto-crystalline and magneto-optical effects. In
particular, an interesting example are peroskovite derived
ruthenates, which display a fascinating variety of magnetic
and electronic states, often with experimental signature of
strong coupling to the lattice [5].

Concerning the elemental 4d metals Delin et al. [6, 7]
and Stepanyuk et al. [10] have recently pointed out on
the grounds of density functional theory (DFT) calcula-
tions that although Pd and Rh are non-magnetic in their
bulk structure, bridges in quantum point contacts con-
structed from these elements can be ferromagnetically or-
dered. In the present article we will show that ferromag-
netic order can also occur in bulk Pd and Rh even at the
optimum lattice constant if their crystal symmetries are
changed. Although the DOS in 4d metals is reduced by
the stronger interaction of 4d wave functions, the change
of crystal symmetry can still raise the DOS at the Fermi
level sufficiently enough to fulfil the Stoner criterion for
ferromagnetism.

The article is organised as follows. In Section 2 we
point out that fcc, bcc, hcp and dhcp (double-hcp) phase
modifications of late transition and noble metals can be
experimentally realised in the form of thin films grown
on suitable substrates. Section 3 presents experimental
evidence confirming theoretically predicted ferromagnetic
order in Rh and Pd clusters. The calculation procedure
presented in Section 4 will be applied in Section 5 to anal-
yse the effect of crystal phase change on the electronic
structure of all 4d and 5d late transition metals. It will be
demonstrated that the change of crystal symmetry from
natural fcc into bcc induces ferromagnetic order in Rh
whereas the change from fcc to hcp/dhcp induces ferro-
magnetic order in Pd at the optimum lattice constant.
This will be attributed to the position of the Fermi level
at the top of the strongest peak of the bcc or hcp/dhcp
DOS for Rh or Pd, respectively. Section 6 is devoted to the
explanation of the occurrence of those strong peaks in the
DOS of bcc Rh and hcp/dhcp Pd. We will demonstrate
there that the symmetry at a k-point (translation + point
group symmetry) is responsible for flat bands which, in
turn, lead to strong peaks in the bcc and hcp DOS. Sec-
tion 7 discusses the instability/metastability of the bcc

and hexagonal (hcp/dhcp) phase modifications of metals
whose native structure is close-packed, showing how such
metals can be grown in the form of thin epitaxial films
possessing the corresponding phase modification. Our con-
clusions will be summarised in Section 8.

2 Crystal phase modifications

In contrast to lattice dilated metals [11,12] and free stand-
ing monolayers (MLs) of late transition metals [13, 14], for
which calculations predict the existence of ferromagnetic
order but which cannot be experimentally realised [15],
the fcc, bcc, hcp and dhcp crystal phase modifications
of late transition and noble metals can be stabilised
in the form of thin films deposited on suitable sub-
strates [18–42]. Metals whose natural phase is bcc or hcp
can be grown in the (100)-oriented fcc (or fct) phase mod-
ification via pseudomorphic growth [16] on (100)-oriented
cubic metals. The best known examples are: the growth
of up to 60 MLs thick (100)-oriented fcc films of Fe
on Cu(100) [18–20], of (100) and of up to 700 ML of
(110)-oriented fcc films of Co on (100)- and (110)-oriented
Cu substrates [20–22] and of fcc Ti on Al(100) [23]. Met-
als whose natural phase is hcp or fcc have also been suc-
cessfully grown [16] (via pseudomorphic growth) in the
form of (100)-oriented bcc films on (100)-oriented metal
substrates. Examples are: bcc (or bct [16]) Co on var-
ious (100)-oriented substrates such as Fe(100) [24, 25]
and bcc Au on W(100) [26]. The hcp and dhcp crystal
phase modifications of late transition and noble metals
(whose natural phase is fcc) have successfully been sta-
bilised in the form of up to 100 ML thick films deposited
on suitable (100)-oriented substrates [27, 28, 31, 32, 34].
Examples are: hcp and dhcp Ni grown on Fe(100) and
Au(100) [27, 28, 35] and hcp and dhcp Pd grown on
W(100) or Nb(100) [27, 28, 31]. Also the stabilisation of
the hcp phase modification of metals whose natural phase
is bcc has been reported for Fe on Ru(0001) [36] and for
Nb on Zr [41]. Moreover, pseudomorphic growth can sta-
bilise thin films of rare-earth metals in crystal phase mod-
ifications. For example Eu, a bcc metal, was found to grow
in the fcc phase on Re [42]. Beside the induction of phase
modifications via epitaxial growth, there are experimen-
tal results showing that clusters of metals whose natural
phase is fcc (like Ni) order in the hcp phase modification
below the critical median size of 4 nm whereas larger par-
ticles are still fcc [43]. The stability and magnetic order of
two- or three-dimensional free standing or supported clus-
ters is an interesting area of research within which also
clusters of 4d and 5d transition metals have intensively
been studied.

3 Ferromagnetism in clusters of 4d late
transition metals

Clusters of Ru [44], Rh [44, 45] and Pd [45, 46] have ex-
perimentally been found to be ferromagnetically ordered.
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First principle calculations showed that ferromagnetic or-
der in small Pd clusters occurs because they stabilise in
a structure which breaks the four-fold symmetry of the
natural fcc phase [47,48]; Pd clusters in the fcc phase are
found to be non-ferromagnetic [47,48]. Recently, ferromag-
netic order in Pd clusters was found to be directly related
to the density of stacking faults existing in fcc Pd parti-
cles [49]. Since the occurrence of a stacking fault breaks
locally the four-fold symmetry of the fcc lattice, the ex-
perimental data of Sampedro et al. [49] shows that the
fraction of atoms which carry the ferromagnetic order lies
in those clusters in a close-packed structure characterised
by lack of four-fold symmetry.

In contrast, the magnetism of Rh clusters is not
affected by this symmetry transformation when close-
packed structures (fcc-cuboctahedral and icosahedral)
are compared [48]. Ab initio calculations have found
that Rh4 clusters with four-fold symmetry are ferro-
magnetic whereas tetrahedral clusters, which have three-
fold symmetry (i.e dense-packed structure), are not fer-
romagnetically ordered [50]. Similarly, calculations [51]
and experimental results [52] showed that it is not the
bulk but the surface atoms of (100)-oriented fcc Rh
(which are characterised by lack of three-fold symme-
try) that are ferromagnetically ordered. Thus, experi-
mental results [44–46,49, 52] and first principles calcu-
lations [47, 48, 50, 51] strongly indicate that the break of
four-fold symmetry favours the occurrence of ferromag-
netic order in Pd structures, whereas the preservation of
four-fold symmetry in a non close-packed structure en-
hances ferromagnetic behaviour in Rh.

Using first principles DFT calculations we will confirm
the suppositions made above by calculating the crystal
phase dependence of the magnetic order in 4d and 5d late
transition metals. We will show that ferromagnetic order
can easily be explained by considering the shape of the
density of states (for example the energy position of the
peaks) which strongly depends on the crystal phase sym-
metry and not on the atomic number. Consequently, we
will demonstrate that the crystal phase which preserves
the close-packed structure without having four-fold sym-
metry, namely the hcp and dhcp structure, leads for Pd
to a DOS at the Fermi energy (N(EF )) high enough to
induce ferromagnetic order in the metal at the equilib-
rium lattice constant. The situation for Rh is reversed.
The crystal phase which preserves four-fold symmetry but
is not close-packed, i.e. bcc, raisesN(EF ) for Rh to a value
high enough to induce ferromagnetic order in the metal at
the equilibrium lattice constant. We will discuss the origin
of the flat bands (of the bulk band structure) which are
responsible for the highN(EF ) values of DOS in Section 6.

4 Calculation procedure

The calculations were performed within the framework
of DFT, using the full potential linearised plane wave
(FLAPW) method and the LSDA approximation [53, 54]
as implemented in the Wien2k package [55]. First scalar
relativistic calculations were carried out and subsequently

spin-orbit coupling was included in a second variation
step [55]. The calculations were performed at 560 k-points
in the irreducible wedge of the Brillouin zone. The opti-
mum lattice constants of the studied bulk structures were
determined by minimising the total energy as a function of
the lattice constant. Convergence of the self-consistent cal-
culations was assumed when the charge distance defined as∫ |ρn(r)−ρn−1(r)|d3r, where ρ is the charge density and n
is the iteration number, was smaller then 1×10−4e in three
consecutive iterations. It should be mentioned that LDA
(LSDA) underestimates the lattice constants of transition
metals [56]. Gradient corrections, on the other hand, dra-
matically reduce the error [56–58] and also give the correct
natural phase stability [59], but they tend to overestimate
the magnetic moment [3,56,62]. Since ferromagnetic order
in transition metals is the prime objective of this study,
we decided to use mainly the LSDA approximation.

5 Magnetic order and crystal symmetry

5.1 Ferromagnetic 3d metals

Before presenting our own results we want to briefly sum-
marise the results obtained so far on the dependence of
magnetism on the crystal phase for the well known 3d fer-
romagnets: Fe, Co and Ni. Iron is ferromagnetically or-
dered at the optimum lattice constant only in its natural
bcc phase [64–66], with the magnetic moment of 2.2 µB

per atom. Fcc Fe is in an anti-ferromagnetic state [66] and
hcp Fe in a non-ferromagnetic state [65] at the optimum
lattice constant. Cobalt is ferromagnetically ordered in all
the three phases (i.e. hcp, fcc, bcc) at the optimum lattice
constants, with bcc Co having the largest magnetic mo-
ment, followed by the moments of fcc and naturally occur-
ring hcp Co [67]. Non-ferromagnetic order has been cal-
culated for bcc Ni [68], whereas for hcp Ni ferromagnetic
order with the magnetic moment by 0.2 µb per atom lower
than in fcc Ni (0.6 µb per atom) was measured [27, 69].

To the best of our knowledge the dependence of mag-
netism on the crystal phase for late 4d and 5d metals has,
until now, not been explored. In the following we will show
that crystal phase change can be the driving force behind
ferromagnetic order in bulk Pd and Rh at the optimum
lattice constant.

5.2 Phase stability

Panel (a) of Figure 1 gives the total energy of Rh in the
bcc, fcc, hcp and dhcp crystal structures as a function of
the lattice constant. The optimum atomic densities, i.e.
the densities at the lattice constants for which the total
energies shown in Figure 1 attain minima, are the same for
all the four crystal structures, with the optimum atomic
density of fcc Rh corresponding to the nearest neighbour
distance of 2.67 Å, which is by less than 1% smaller than
the experimental value of 2.69 Å. Due to different sym-
metry and especially because of the nearest and next-
nearest neighbour distances being different in the bcc and
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Fig. 1. Total energy of bulk Rh (panel (a)) and bulk Pd (b) in
the bcc (squares), fcc (circles), hcp (diamonds) and dhcp struc-
ture (crosses) as a function of atomic volume expansion (+) or
contraction (–) obtained from DFT spin-polarised calculations
with spin-orbit coupling included.

fcc structures, the total energy of bcc Rh is, as expected,
much higher than that of its natural fcc structure. On the
other hand, the total energies of hcp and dhcp Rh are
smaller than that of fcc Rh. In this context the similarity
between the fcc, hcp and dhcp crystal phases, which are all
close-packed structures, becomes important. The hexag-
onal close-packed structures (hcp, dhcp) have the same
atomic nearest and next-nearest neighbour distances as
the fcc structure. Since these lattices differ only in the
stacking sequence of the densest-packed hexagonal atomic
monolayers, they are nearly energetically equivalent. Sim-
ilar results were obtained for Pd [31]. For comparison the
total energies of Pd in the four crystal phases are plot-
ted in the lower panel of Figure 1. The hexagonal phases
(i.e. hcp and dhcp) of Pd have slightly lower total ener-
gies than the natural fcc phase. It should be stressed that
this result is valid only at 0◦ K and does not mean that
the hexagonal phases of Rh and Pd are energetically more
favourable than their fcc phase also at finite temperatures.
However, this cannot explain the marked drop of the total
energy of dhcp Pd at the optimum lattice constant. Below
we will show that the occurrence of ferromagnetic order
can provide a suitable explanation of this effect.

The fact that our DFT calculations done at 0 K
wrongly predict the hexagonal phases to be slightly more
stable than the natural fcc phase is not unexpected. Al-
though first principles calculations based on DFT are
very successful in explaining many properties of materi-
als, including some ground state properties of transition

metals [3, 70–72], they often give the hcp phase to be
more stable than the natural fcc or bcc phase. Many stud-
ies [60, 73] have demonstrated that the energy differences
between the bcc, fcc and hcp phases are very small if the
d-band is filled. These differences increase with the de-
creasing d-band occupancy until the d-band occupancy
of Fe is reached. Non-spin polarised self consistent cal-
culations found the fcc phase of Fe to be by 24 mRy per
atom more stable than its natural bcc phase. Furthermore,
the calculations show that if bcc Fe were not ferromag-
netic, Fe would have the hcp ground state [66, 73, 74] in
full accordance with the crystal structure of Ru and Os,
the 4d and 5d counterparts of Fe. The inclusion of spin-
polarisation reduces the total energy of ferromagnetically
ordered bcc Fe by 33.9 mRy, making bcc the most sta-
ble phase of Fe among all the other ones [66]. Note, that
also ferromagnetically ordered fcc Fe has its total energy
reduced, but only by some 2 mRy [66]. This different be-
haviour of fcc and bcc Fe was related to the locus of
the Fermi level inside the d-bands of the spin minority
states [60]. It was claimed that, similarly to the noble
metals, the (almost) filled spin-majority d-bands of Fe
contribute to smaller extent to the energy differences be-
tween various structures than the spin-minority d-bands.
The bcc structure locates the Fermi energy for the spin-
minority bands of Fe in a deep minimum of the DOS,
which separates the bonding states, leaving them occu-
pied, from the anti-bonding states which remain unoccu-
pied [75]. This results in a strong stability of the bcc phase
similar to that of the metals with nearly half-filled d-bands
like W or Mo [66,73, 75]. In the case of fcc Fe the Fermi
level of the spin-minority states does not lie in a minimum
like that of bcc Fe, thus only slightly reducing the total
energy of fcc Fe.

It seems that a similar situation occurs also for Pd
when the fcc, hcp and dhcp structures are considered.
Many authors [11, 12, 60, 66] have shown that lattice ex-
pansion produces ferromagnetic order in late transition
metals. For lattice-expanded Pd a magnetic moment of
up to 0.36 µB was reported [11, 12]. As a consequence of
the d-band occupancy of Pd, this magnetic moment makes
the spin-majority d-bands of Pd almost completely filled.
Thus, in analogy to Fe, the total energy of magnetic Pd
should be strongly influenced only by the spin-minority
bands. Panel (a) and (b) of Figure 2 give the paramag-
netic DOS of fcc and hcp Pd near the Fermi energy, re-
spectively. For fcc and dhcp Pd a magnetic moment of up
to 0.36 µB would push the Fermi level of the spin-minority
states to the top of a strong DOS peak. Similarly to fcc Fe,
this would lead for fcc and hcp Pd to a hardly discernible
drop in their total energies. For dhcp Pd the situation is
different. In the paramagnetic state (Fig. 2c) the Fermi
level lies at the top of one of the two strong peaks of
the dhcp DOS. Similarly to bcc Fe, a spin anisotropy in
dhcp Pd would shift the Fermi level of the spin-minority
states exactly to the minimum between the two peaks (see
Fig. 2e). As will be discussed later, peaks in the DOS are a
consequence of the narrow portions of bands at the peak
energy. It is well known that due to the total reflection
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Fig. 2. (a, b, c) Paramagnetic, d-projected DOS of fcc Pd
(panel (a)), hcp Pd (b) and dhcp Pd (c) at the optimum lat-
tice constant obtained from DFT calculations with spin-orbit
coupling included. (d, e) Spin-majority (panel (d)) and spin-
minority (e) d-projected DOS of dhcp Pd at the optimum lat-
tice constant obtained from ferromagnetic DFT calculations
with spin-orbit coupling included. The magnetic moment is
0.11 µB per atom. The energy scale in this and in the next
figures is given relative to the Fermi energy. Consequently the
Fermi energy corresponds to zero on the scale and occupied
electronic states have negative energies. The position of the
Fermi energy is marked with thin vertical lines. In this and in
the next figures the unit-volume represents the unit-cell vol-
ume divided by the number of atoms in the (non-primitive)
unit-cell, i.e. the so-called volume per atom (atomic-volume).

of the band states at the high symmetry points of the
Brillouin zone (BZ) bands become flat there. High sym-
metry points exist at the centre and at the edge of the BZ.
For a band with mostly d-character the exchange energy
gain at the BZ-edge will be rather large [6–9] if the band
splits due to spin-polarisation in such a way that one of
the spin channels ends above (Fig. 2e) and the other be-
low the Fermi energy (Fig. 2d). As a consequence, the
total energy of dhcp Pd would drop at the onset of fer-
romagnetic order (Fig. 1b). Thus, the drop of the total
energy of dhcp Pd at the optimum lattice constant could
be explained if ferromagnetic order occurred in dhcp Pd
at the equilibrium lattice constant.

5.3 Occurrence of ferromagnetic order

Ferromagnetic order appears if the energy gained by a
preferential parallel spin alignment surpasses the energy
needed to induce the desired spin order. The energetic
profit comes from the repulsive interaction between the
electrons (exchange interaction). Due to the Pauli exclu-
sion principle the probability of finding an electron in the
vicinity of another electron with the same spin direction
is much lower than if the electrons have opposite spins.

Larger distances between electrons lead to weaker repul-
sive interactions between them reducing the total energy
of the system. Thus the repulsive interaction between elec-
trons favours parallel positions of the spins and with that
a spontaneously magnetised state. The potential energy
gain through the exchange interaction of parallel spins is
proportional to the number of electrons which can be re-
arranged to have their spins parallel. To raise the number
of electrons with one spin direction (majority spin direc-
tion) at the cost of the other spin direction (minority spin
direction) the electronic system has to be changed. The
electrons with the majority spins have to occupy states
above the initial Fermi level. This increases the total ki-
netic energy of the electronic system. The increase in the
kinetic energy is proportional to (i) the number of the
minority spin electrons which are shifted to non-occupied
(majority spin) states and (ii) the band energy difference
encountered during this process [2]. On the one hand, the
system gains exchange energy by introducing spin asym-
metry, on the other, the induced spin-order increases the
total kinetic energy of the electronic system. Thus, fer-
romagnetic spin alignment is favourable if a high num-
ber of (minority spin) electrons can be shifted to non-
occupied (majority spin) states over a small band energy
difference. Therefore, an important quantity for the occur-
rence of ferromagnetic order is the density of states at the
Fermi level (N(EF )). The Stoner criterion for ferromag-
netism: I ·N(EF ) > 1, tests whether the potential energy
gain through the exchange interaction by establishing fer-
romagnetic spin alignment overcomes the energy cost of
the rearrangement of the band occupancy [2]. Since the
Stoner parameter I, which is related to exchange interac-
tion, is only insignificantly influenced by different crystal
symmetries, the decisive role in establishing ferromagnetic
order is played by the density of states at the Fermi energy.
This is especially the case for 4d and 5d metals, where the
Stoner parameter shows practically no dependence on the
atomic number.

5.4 DOS and crystal structure

Calculating the electronic structure of late transition and
noble metals in various crystal phases, we observe that
the optimum atomic density and the related d-band width
are independent on the crystal phase. On the other hand,
the shape of the DOS (for example the position of the
peaks inside the DOS) stringently depends on the crys-
tal phase and not on the atomic number. By comparing
the DOS of different crystal phases, we notice that the
larger the difference in the crystal symmetry, the larger
the difference in the shape of the DOS. For example, Fig-
ures 3a, b, c, d show the d-projected DOS of Pd in the
bcc, fcc, hcp and dhcp phase. It can be observed that
the DOS of the dhcp structure is a superposition of the
DOS of the fcc and hcp ones, which can be attributed
to the fact that the stacking sequence of the close-packed
hexagonal atomic layers is for the dhcp structure posi-
tioned in between the fcc and hcp sequences. On the other
hand, the DOS of the bcc phase, which does not contain
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Fig. 3. Paramagnetic, d-projected DOS of bulk Pd in the
bcc (a), fcc (b), hcp (c) and dhcp structure (d) at the op-
timum lattice constant obtained from DFT calculations with
spin-orbit coupling included. (The calculated optimum lattice
constant is by 1% smaller than the experimental one.)

close-packed hexagonal atomic layers, is very different
from the DOS of those phases (fcc, hcp, dhcp) which con-
tain these layers. Yet, the shape of the DOS is very similar
for all the d-band metals in the same crystal phase, with
the position of the Fermi level relative to the valence band
being dependent on the occupancy of this band. Thus, it
is sufficient to analyse the crystal phase dependence of the
electronic structure of only one d-band metal, for example
of Pd, to obtain useful information about the dependence
of the electronic structure (for example the DOS at the
Fermi level) on the crystal phase of the other d-band met-
als. The differences between those metals consist in the po-
sition of the Fermi energy within the DOS due to a differ-
ent d-band filling and the dependence of the d-band width
on the atomic number. In general, the d-band width (W )
increases with the decreasing atomic number within a row
of the periodic table of elements while increasing down
the groups of the table (W3d < W4d < W5d). Using these
considerations we will now analyse the electronic and mag-
netic properties of 4d and 5d late transition metals.

5.4.1 Pd and Pt

The 4dmetal Pd is not ferromagnetic although it possesses
in the natural fcc phase a high DOS N(EF ) of 2.35 at the
Fermi energy. Therefore a popular view has been estab-
lished that metallic Pd needs just a little push to become
ferromagnetically ordered [76]. Bland and associates [77]
supposed that the magnetic properties of Pd are sensi-
tive to structural change because of the high DOS at the
Fermi surface. As already mentioned, a change of crystal
symmetry is accompanied by a change of the shape of the
DOS (i.e. of the position of the maxima). Figure 3 shows
that for Pd the preservation of the four-fold symmetry at
the change of the crystal structure to a non-close-packed
one (i.e. a structure which does not possess close-packed
hexagonal atomic planes), namely bcc, significantly re-
duces the DOS at the Fermi level to N(EF ) = 1.1. We

have shown [31] that ferromagnetic order does not ap-
pear in bcc Pd even when the lattice is expanded by more
than 40%. In contrast, the break of the four-fold symme-
try with the simultaneous preservation of the close packed
structure (leading to hcp or dhcp structure) raises the
DOS at the Fermi-level to N(EF ) = 2.58 for dhcp Pd and
to N(EF ) = 2.63 for hcp Pd. As a consequence, ferromag-
netic order appears in hcp and dhcp Pd at the optimum
lattice constant (see also Fig. 5). Investigating the elec-
tronic structure of Pd films grown in the hcp/dhcp crystal
structure on W(001) and Nb(001) substrates with ultravi-
olet photoelectron spectroscopy we found evidence of a fer-
romagnetic spin-split [31]. Recently, Sampedro et al. [49]
have experimentally confirmed our findings showing that
Pd in an hcp or dhcp environment is ferromagnetically
ordered.

Pt the 5d counterpart of Pd, has the same valence band
occupancy as Pd. Thus, analogously to Pd, the hcp phase
of Pt could be of interest as far as ferromagnetic order is
concerned. Unfortunately, a larger d-band width of Pt in
comparison to Pd together with the fact that the Stoner
parameters of 5d metals are smaller than those of 4d met-
als (which in turn are much smaller than the respective
parameters of 3d metals) [14, 78] make hcp Pt only para-
magnetically ordered.

Although the electronic structure of bcc Pd (Fig. 3a)
is quite insusceptible to spin anisotropy, it is nevertheless
interesting as far as magnetic order is concerned. In the
total DOS of bcc Pd (Fig. 3a) there exists a sharp and
strong peak at the energy of −0.7 eV. It is the strongest
peak out of those exhibited by the DOS of bcc, fcc, hcp
and dhcp Pd. If a metal had the Fermi level there, a pref-
erential spin alignment would very probably develop in it.
Obviously, such a metal would have to have a bcc struc-
ture and a d-band occupancy with one (or a little more
than one) electron less than Pd. We will further consider
Rh as a possible candidate for such a metal.

5.4.2 Rh

Figures 4a, b, c, d show the paramagnetic d-projected
DOS of bcc (panel (a)), fcc (b), hcp (c) and dhcp (d)
Rh at the optimum lattice constants. The Fermi level in-
tersects the DOS of bcc Rh exactly across the strongest
peak, which leads to a very high DOS there (three times
higher than that of fcc Rh). As a result, ferromagnetic
order in bcc Rh at the optimum lattice constant is estab-
lished with the magnetic moment of 0.26 µB (Fig. 5a).
The behaviour of the total energy with lattice expansion
and contraction is for the various crystal phases of Rh
(Fig. 1a) similar to that of Pd (Fig. 1b). In contrast, the
behaviour of the magnetic moment of Rh for these crys-
tal phases (Fig. 5a) is completely reversed in comparison
to that of Pd (Fig. 5b): bcc Rh is ferromagnetically or-
dered at the optimum lattice constant whereas fcc, hcp
and dhcp Rh is not ferromagnetic even at the lattice ex-
pansion of up to 40%.

The behaviour of the magnetic moment can also be
explained by the DOS of Rh, which is, as indicated above,
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Fig. 4. Paramagnetic, d-projected DOS of bulk Rh in the
bcc (a), fcc (b), hcp (c) and dhcp structure (d) at the op-
timum lattice constant obtained from DFT calculations with
spin-orbit coupling included.

very similar to that of Pd. However, the position of the
Fermi level within the DOS of Rh is different than that of
Pd due to its smaller d-band occupancy and larger d-band
width originating from its smaller atomic number. Com-
paring the DOS of Rh (Fig. 4) and Pd (Fig. 3), it can
be seen that the larger d-band width of Rh reduces the
heights of the peaks in its DOS relative to those of Pd.
An exception to this behaviour is the strongest peak in the
DOS of the bcc structure, whose height stays the same for
the both metals. As indicated above, the position of this
peak at the Fermi level of bcc Rh leads to a very high DOS
there. In contrast, the position of the Fermi level of fcc,
hcp and dhcp Rh leads to a small DOS at the Fermi level
in these phases. Even the lattice expansion of up to 40%
does not enlarge it enough to induce ferromagnetism in
these phases of Rh. Further expansion induces ferromag-
netic order there with the saturated value of almost 1.5 µB

(Fig. 5a) at the expansion of 90%. This is also the value to
which the magnetic moment of bcc Rh saturates. In con-
trast to fcc, hcp and dhcp Rh, the position of the Fermi
level at the top of the strong DOS maximum induces ferro-
magnetic order in bcc Rh at the optimum lattice constant
and maintains it even if the bcc lattice is contracted. Mea-
surements of Tomaz et al. [79] have shown that bct Rh is
ferromagnetically ordered whereas fct Rh is not, providing
experimental evidence that changing the crystal structure
from fcc to bcc, by introducing tetragonal distortion [81],
indeed induces ferromagnetic order in Rh.

5.4.3 Ir, Ru and Os

Ir has a similar electronic structure as Rh. Having a larger
d-band width and a smaller Stoner parameter it does not,
however, exhibit ferromagnetic order at the optimum lat-
tice constant, not even in the bcc structure.

In the case of other late transition metals like Ru
and Os, their Fermi levels do not cross strong maxima
of the DOS of the bcc, fcc, hcp and dhcp crystal phases.
In addition, the smaller atomic numbers of Ru and Os (in

Fig. 5. Magnetic moment of bulk Rh (panel (a)) and bulk
Pd (b) in the bcc (squares), fcc (circles), hcp (diamonds) and
dhcp structure (crosses) as a function of atomic volume expan-
sion (+) or contraction (–) obtained from DFT spin-polarised
calculations with spin-orbit coupling included. Note that the
total energy (see Fig. 1) of dhcp Rh does not drop like that of
dhcp Pd at the optimum lattice constant, because dhcp Rh is
not ferromagnetically ordered there and obviously the double-
peak DOS structure (see Fig. 4d) lies well above the Fermi
energy.

comparison to Pd and Pt) work against a possible estab-
lishment of ferromagnetic order in these elements, because
they dilate the d-band width (in comparison to that of Pd
and Pt) reducing the peak heights of their DOS.

5.5 Orbital magnetic moment

In contrast to the atomic state, where orbital mag-
netic moments are fully developed, in the bulk they are
quenched. Although spin-orbit coupling reduces the spin-
related magnetic moment [80] (by lowering the DOS and
by causing more spin-flips among the majority spins than
among the minority spins, thus reducing the difference
between spin-up and spin-down numbers) it also induces
a small orbital moment by spin-polarisation. Sticht and
Kübler [83] have shown that the experimental magnetic
moment of Gd coincides with the theoretically deter-
mined one only when the orbital moment is added to
the spin related moment. Since spin-orbit interaction is
larger for 4d than for 3d metals let us see what or-
bital moment results from the spin-polarisation of bcc Rh
and hcp/dhcp Pd at the optimum lattice constant. Ebert
et al. [84] obtained a simple equation which relates or-
bital moment µorb to (i) spin-orbit coupling parameter (ξ),
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(ii) the spin-majority (N (↓)(EF )) and (iii) spin-minority
(N (↑)(EF )) density of states at the Fermi-energy [85]:

µorb = Iz � ξ[N (↓)(EF ) −N (↑)(EF )]. (1)

This equation gives at the equilibrium lattice constants
the orbital moments per atom of µbcc−Rh

orb � 0.06 µB,
µhcp−Pd

orb � 0.07 µB and µdhcp−Pd
orb � 0.06 µB for bcc Rh,

hcp Pd and dhcp Pd, respectively. These values are smaller
than the respective spin-moments, but positive, leading
at the optimum lattice constants to the total magnetic
moments per atom of (µtot = µspin + µorb), µbcc−Rh

tot =
0.32 µB, µhcp−Pd

tot = 0.23µB, µdhcp−Pd
tot = 0.16 µB for

bcc Rh, hcp Pd and dhcp Pd, respectively.
Summarising this section, we found that the four-

fold symmetry in a non close-packed structure favours
ferromagnetic order in bulk Rh at the optimum lattice
constant, whereas the lack of four-fold symmetry in a
close-packed structure favours the appearance of ferro-
magnetism in bulk Pd. This conclusion can offer a pos-
sible explanation for a lower magnetic moment obtained
for Rh nanowires in comparison to Pd nanowires in a cal-
culation at the nanowire equilibrium bond length. Despite
the expectation that in lower dimensions Rh should have
a larger magnetic moment than Pd due to the former
having more empty d-bands than the latter, Delin and
Tossatti [7] calculated for Rh nanowires a magnetic mo-
ment of 0.3 µB and for Pd nanowires a larger magnetic mo-
ment of 0.7 µB at the nanowire equilibrium bond length. It
should be noted, however, that to simulate the nanowires
the authors used an inherently three-dimensional code [8].
Therefore, the infinitely long nanowires were arranged
in an infinite two-dimensional hexagonal array. So, their
three-dimensional lattice was a hexagonal one which was
stretched considerably in-plane (i.e. parallel to the hexago-
nal planes) to properly reduce the interaction between the
nanowires lying perpendicularly to the hexagonal planes.
The wire-wire vacuum distance was set to at least three
bond lengths and the bond-length in the nanowire was
allowed to relax, which, due to the in-plane extension of
the system, resulted in a bond-length smaller than the
atomic nearest neighbour distance in the natural fcc crys-
tal phase. Now, a speculative explanation of the lower
magnetic moment obtained for Rh nanowires in compari-
son to Pd ones can be the symmetry of the 3-dimensional
lattice used in the calculation. Although the 3-dimensional
lattice was considerably expanded in-plane, it was still
characterised by lack of four-fold symmetry which, ac-
cording to our conclusion above, should: (i) enhance the
magnetic moment of Pd, and to (ii) reduce it for Rh, in
agreement with the results of Delin and Tossatti [7].

6 The origin of flat bands

The fact that only 3d late transition metals show fer-
romagnetic order in their natural crystal phases can be
explained in a simple way by large values of the respec-
tive Stoner parameters and the relation of their atomic

numbers to the d-band widths. Being each at the top of
a transition metal group (3d instead of 4d or 5d) with
the largest atomic number within the 3d-row of transition
metals, Fe, Co and Ni have the narrowest d-bands of all
of these metals, which insures the highest possible DOS
at the Fermi level. Beside having smaller Stoner parame-
ters, the 4d transition metals (with the narrowest d-band
width within the 4d row) have broader d-band widths than
their counterparts in the 3d metal group which decrease
the height of the DOS maxima for Ru, Rh, Pd in com-
parison to Fe, Co and Ni. In consequence, ferromagnetic
order does not develop in the natural crystal phases of the
4d metals. However, the d-band widths of Rh and Pd are
still narrow enough to produce the DOS at the Fermi level
high enough for ferromagnetic order to develop if Rh is in
the bcc and Pd in the hcp or dhcp phase, respectively. In
contrast to their counterparts in the 5d row (Ir and Pt)
(which have broader d-band widths and therefore smaller
DOS maxima than Rh and Pd) ferromagnetism develops
in these phases of Rh and Pd in their bulk structure at
the optimum lattice constants. Because the ferromagnetic
order is strongly related to the Fermi energies lying at
the top of the strongest peaks in the DOS of the bcc and
hcp/dhcp structures, we will further search for the origin
of those peaks. This will be done by identifying the band
states in the bulk band structure which give rise to the
DOS peaks mentioned above. After that we will discuss
the origin of these states by relating them to the symme-
try of the respective crystal structure.

6.1 The origin of the strongest peak in the bcc DOS

Figure 6 shows the calculated paramagnetic DOS of
bcc Rh within the LSDA (Figs. 6a, b) or GGA (Fig. 6c)
approximation with (Figs. 6a, c) or without (Fig. 6b)
spin-orbit coupling included. In all the cases a strong
peak at the Fermi energy is present. It is worth noting
that the peak becomes even higher if the GGA approx-
imation is used or spin-orbit coupling is not included.
Such a peak occurs not only for Rh or Pd, but also in
the bcc DOS of all the transition metals [3, 4, 86, 87].
Andersen [87, 88] has shown that within the atomic sphere
approximation (ASA) canonical d-bands may be derived
that depend only on the crystal structure (that is, they de-
pend neither on the lattice constant nor on the particular
transition metal). The bcc DOS derived from the canoni-
cal d-bands is also characterised by a strong peak, which
for the d-band occupancy of Rh lies at the Fermi energy
(Fig. 6). A similar peak also appears in the DOS calculated
for metals in the bcc lattice within the hybrid nearly-free
electron tight-binding secular equation [89]. All these re-
sults show that the strong peak at the Fermi level of the
DOS of bcc-Rh DOS is characteristic of the bcc crystal
lattice. Let us now see how it can be accounted for.

6.1.1 Points of symmetry in k-space

In a crystalline solid, the motion of electrons is charac-
terised by energy bands En(k) with band index n and
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Fig. 6. d-projected DOS of bulk Rh in the bcc structure at the optimum lattice constant obtained from DFT non-spin-polarised
calculations within the LSDA (panels (a, b)) or GGA approximation (c), with (a, c) or without (b) spin-orbit coupling included.

wave vector k. DOS (which gives the number of electronic
states as a function of energy) involves summation (inte-
gration) over all the wave vectors. Thus the occurrence of a
peak in DOS means that states at many (different) points
in momentum space (i.e. at many irreducible k-vectors)
have energy equal to that of the peak. This happens when
flat bands exist at that energy. Due to the lattice sym-
metry, bands become flat at symmetry points of the bulk
Brillouin zone (bulk BZ). The bulk BZ, which is related
to the periodicity of a crystal in the momentum space,
delimits the region in this space which contains all the
irreducible wave vectors. Due to the symmetry of the lat-
tice, the bulk BZ possesses, beside the centre of the BZ
(Γ point), points of symmetry only at the BZ boundaries.
Panel (a) of Figure 7 shows the BZ of the bcc struc-
ture which possesses, beside the centre (Γ ), three points
of symmetry at the BZ surface: H, N and P [90]. Fig-
ures 8 and 9 present the bulk band structure of bcc Rh
in the crystallographic high symmetry directions 〈100〉
(Γ -H), 〈110〉 (Γ -N) and 〈111〉 (Γ -P) in the paramag-
netic (Fig. 8) and ferro-magnetic (Fig. 9) state. It can
be observed (Fig. 8) that the bcc symmetry locates states
with k at the symmetry points N and P at the Fermi
energy, forming there a flat band between these points
(i.e. in the N-P direction). This band appears in all the
bcc transition metals and is also present in the bcc canon-
ical bands [4, 86, 87]. Figure 10 demonstrates that the flat
band along the N-P line also appears in the bcc structure
of transition metals whose natural phase is different from
the bcc one. Thus the symmetry of the bcc lattice must
be at its origin.

Figure 7 shows that the NP line is the symmetry axisD
of the bcc BZ. It lies on the surface of the BZ in the 〈100〉
direction at the intersection of the ΓNP and NPH sym-
metry plane (the latter being at the surface of the bcc BZ).
The thick dashed lines in panel (b) of Figure 7 show a cube
whose edges are made up of the P-N segments. Interest-
ingly, all states situated on the surface of this cube have
a periodicity in the momentum space which is two times
smaller than that of the other states which possess the pe-
riodicity of the fcc lattice, which is the reciprocal lattice of

Fig. 7. (a) Brillouin zone of the bcc lattice. (b) Inserted in the
bcc BZ is a cube (marked with the thick dashed lines) whose
corners are symmetry points P and edges are on the N-P line
situated on the surface of the bcc BZ. (c) {110} (ΓNPH) plane
cut through the extended zone scheme of the bcc BZ. The
length of the k-vectors on the N-P lines (D-symmetry axis)
marked with short arrows and aligned with the 〈001〉 direction
is two times smaller than of those lying on the k-lines aligned
with the 〈001〉 direction.
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Fig. 8. Bulk band structure of bcc Rh along the crystallo-
graphic high symmetry directions: 〈100〉 (Γ -H), 〈110〉 (Γ -N),
and 〈111〉 (Γ -P) obtained from a paramagnetic LSDA calcula-
tion with spin-orbit coupling included performed at the equi-
librium lattice constant of bcc Rh.

the bcc crystal. This is illustrated in panel (c) of Figure 7.
The periodicity on the NP line (e.g. the line marked with
the short arrows in Fig. 7c)) is two times smaller than the
periodicity on the ΓH line which is parallel to the NP line.
It could be supposed that the origin of the flatness of the
band at the Fermi energy between points N and P arises
from the abundance of symmetry points N and P on the
NP line.

Deng, Simon and Köhler [91] have recently obtained
the necessary and sufficient condition for the occurrence
of a ‘flat band’ at an arbitrary point in momentum space.
They found two factors which lead to a ‘flat band’; one of
which is k-dependent, and the other k-independent. The
k-dependent part is related to the existence of a third or-
der pseudo-inversion centre at a k-point. A third order
pseudo-inversion centre means that inversion symmetry
holds only for three directions defined by linearly inde-
pendent vectors, not necessarily for all possible directions
as for a real centre. The pseudo-inversion centre also refers
to the situation where only approximate symmetry exists
due to structure modulation or distortion. Now, unfor-
tunately, all the points between points N and P of the
bcc BZ do not satisfy this requirement. Deng, Simon and
Köhler [91] have shown that even when k-points are not
third order pseudo-inversion centres a band can still be
flat due to the k-independent part which refers to weak
covalent bonding. A weak covalent bond between atoms

Fig. 9. Ferromagnetic (spin-up and spin-down) bulk band
structure of bcc Rh, showing a small, k-point and energy de-
pendent band-split. Notice that the band-split is larger for
bands which are narrow and lie in the vicinity of the Fermi en-
ergy. For the origin of these bands see Section 6.1.2. The bands
were obtained from spin-polarised LSDA calculation with spin-
orbit coupling included performed at the equilibrium lattice
constant of bcc Rh.

of different cells leads to a small group velocity, thus pro-
ducing a flat band.

Figure 11 shows the difference between the self-
consistent electronic and the atomic charge densities in
the densest packed atomic plane (bcc-{110}) of bcc Nb.
It thus indicates where the electronic charge moves upon
bonding. The continuous lines represent charge density
increase, whereas the dashed lines denote charge density
depletion. From that contour-plot it can be observed that
the strongest bond exists between the nearest neighbour
atoms lying in the 〈111〉 direction which is the atomic
densest-packed direction of a bcc crystal. The bonds are
weaker in all directions off the 〈111〉bcc direction, being
the weakest in the 〈100〉bcc direction. It can also be ob-
served that there is electronic charge density depletion
only between the atoms exactly in this direction. Thus,
the flatness of the band along the N-P line could be ex-
plained as follows. As the N-P line has C2ν (mm2) sym-
metry, only a second order pseudo-inversion centre exists
on it. The k-points on this line are all extremal points
with respect to lines in the {100} plane, while along
the k〈100〉 direction there is no pseudo-inversion centre,
so ∂Ek/∂k〈100〉 �= 0. As the interatomic bonding in the
〈100〉bcc direction is rather weak, the group velocity in
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Fig. 10. Band structure of bcc Rh (panel (a)), bcc Pd (b) and bcc Ag (c) along the Γ -P-N direction. The LSDA approximation
was used and spin-orbit coupling was included. Note that although the band width decreases with the atomic number, the
spin-orbit coupling induced splitting of states (e.g. those located for Rh at Γ at −2.8 eV and −3 eV) increases with the atomic
number (i.e. from Rh to Pd and then to Ag).

that direction, ∂Ek/∂k〈100〉, is very small. In this way we
could tentatively explain the flatness of the band along the
N-P line as arising from symmetry (second order pseudo-
inversion centre) and weak bonds in the 〈100〉bcc direc-
tion. However, on the grounds of this explanation all the
bands along the line should be flat. Yet, as Figure 8 shows,
this is not the case: only the band at the Fermi energy is
flat. The other bands even exhibit considerable dispersion
(step-bands) in that direction. Similarly, the k-points on
the Γ −H line are second-order pseudo-inversion centres
and at the same time they are extremal points with respect
to lines in the {100} plane, while in the k〈100〉 direction
there is no pseudo-inversion centre, so ∂Ek/∂k〈100〉 �= 0.
However, a small group velocity in the 〈100〉bcc direction,
would cause the bands along the Γ − H line to be flat.
To the contrary, as it is seen in Figure 8 there are no flat
bands along this line. Therefore, another explanation of
the flatness of the band situated in the N-P direction has
to be found.

6.1.2 Translation symmetry in real space

Obviously band dispersion appears when the band en-
ergy changes with the changing k-vector of a band-state.
The energy of the band state is directly related to the
magnitude of the wave function at the unit-cell bound-
aries [92, 93]. The larger the amplitude of the wave func-
tion between atoms (i.e. a unit-cell boundary), the larger
the binding energy (which is negative) of the state. A max-
imum of the wave function between atoms corresponds to
a ‘bonding’ and a minimum (node) to an ‘antibonding’
character of the state. Thus, the occurrence of band dis-
persion means that the magnitude of the wave function
at the unit cell boundaries also changes with a changing
k-vector. Consequently, lack of band dispersion (i.e. a flat
band) on a k-line means that for the k-vectors ending on

Fig. 11. Difference between the self-consistent electronic
charge density of bcc Nb and the superposition of atomic
charge densities. The presented contour plot is a {110} plane-
cut through Nb. Solid lines indicate a charge density increase,
whereas dashed lines a charge density decrease. The positions
of atomic nuclei are given by the black circles.

that line the magnitudes of the wave functions on the cell
boundaries do not change with changing k.

To relate the change of the k-vector to the change of
the wave-function on the unit-cell boundary we will use
the well known [93] intuitive explanation of the appear-
ance of band dispersion for states in solids. This will be
done by considering the translation symmetry of Bloch
functions and the orbital character of Bloch factors. Due
to translation symmetry, wave functions in solids have the
Bloch form: ψ(k, r) = u(k, r)eikr, where u(k, r) is the
Bloch factor with the property: u(k, r + R) = u(k, r) for
all primitive translations R. Now, when the whole crys-
tal is translated by R, the Bloch function gets multiplied
by eikR. Although the general case is a little difficult to
consider, we can easily see what the effect of this factor is
for the centre of the BZ (k = 0) and for its edge (k = π/R).
For k = 0 the factor eikR = 1 and the translation does not
change the wave function. For k = π/R, eikR = eπi = −1
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Fig. 12. Rough representation of the Bloch functions at the
BZ centre (k = 0) (panels (a, c)) and at the BZ boundary
(k = π/R) (b, d) along an atomic chain. The positions of
atomic nuclei are marked with the dots and the interatomic dis-
tance is equal to R. In panels (a, b) the orbitals point in the di-
rection of the atomic chain, whereas in (c, d) they point off this
direction. The translation symmetry does not change the value
of the wave function in the mid-points between atoms for k = 0.
For k = π/R the magnitude of the Bloch function is signifi-
cantly changed in the mid-points between atoms only when the
orbitals point along the chain. In panel (a) the Bloch function
possesses a minimum between atoms whereas in panel (b) it has
maxima there. As a consequence Eb)(k = π/R) > Ea)(k = 0)
and the band between k = 0 and k = π/R exhibits disper-
sion becoming a step-band. For the case where the orbitals do
not point in the direction of the atomic chain, the energy of
the states at k = 0 and k = π/R does not differ much. The
further off the atomic chain direction the orbitals point, the
closer are the energies of the states at k = 0 and k = π/R
(Ed)(k = π/R) � Ec)(k = 0)), and consequently, the narrower
is the band.

and the wave function changes its signature at the trans-
lation from one atom to the other. This has important
implications for the magnitude of the wave function in
between atoms when the orbitals point in the direction
of an atomic chain and is illustrated in Figure 12. If
this is the case, then for k = 0 (Fig. 12a) there are
nodes of the wave function at the nuclei and at the mid-
points between them. In contrast, for k = π/R there are
nodes only at the nuclei (Fig. 12b) and, as a consequence,
E(k = 0) < E(k = π/R). For k between k = 0 and
k = π/R the energy values are, in most cases, in the
range between E(k = 0) and E(k = π/R) and the band
has dispersion. Now, since in the case of Figures 12c, d
the orbitals do not point in the direction of the atomic
chain, the change of the wave function due to transla-
tion symmetry will not significantly affect its behaviour
between atoms and, consequently, E(k = 0) ∼ E(k =
π/R). Thus, band dispersion appears when orbitals are di-
rected toward atoms, whereas when they point away from
atoms bands are narrow (flat), in perfect agreement with
the results obtained for 4d and 5d metal nanowires by

Delin et al. [6–9]. It follows from their calculations, in
which the atomic wires were parallel to the z-axis, that
the bands whose orbitals point along atomic chains, i.e.
the bands with the d3z2−r2 orbital character have the
largest energy dispersion (see for example Fig. 4 in Delin,
Tossatti and Weht [6]). On the other hand, the bands with
the dxz,yz orbital character, whose orbitals points 45 de-
grees off the atomic chain direction, exhibit smaller en-
ergy dispersion. The narrowest bands are those with the
dx2−y2 and dxy character, whose orbitals point furthest off
the atomic chain direction, being perpendicular to those
chains. We will now apply this conclusion to the bcc bulk
band structure.

For the cubic structure the crystallographic 〈100〉 di-
rections is furthest off the crystallographic 〈110〉 and
〈111〉 directions. It follows, that the bands with symme-
try eg should display the largest dispersion along lines of
k-vectors in the 〈100〉 direction, because the orbitals with
symmetry eg (i.e. dx2−y2 and d3z2−r2) point in that direc-
tion. The further off that direction k-vectors of a line are,
the narrower a band along this line should be. Since the
orbitals of states with symmetry t2g (i.e. dxy, dxz and dyz)
point in the 〈110〉 direction, the bands with this symmetry
should show the largest dispersion along the 〈110〉 direc-
tion. The further off that direction k-vectors of a line are,
the narrower a band along the line should be. Thus, in the
directions where the orbital overlaps are small the band
dispersion should be rather small. As it is further shown,
these conclusions apply to the bcc bulk band structure.

The m-resolved character of the bcc bands is shown in
Figures 13−17. In these figures, orbital character dx2−y2 ,
d3z2−r2 , dxy, dxz and dyz, respectively, is proportional to
the size of the circles. At the centre Γ of the BZ there
should only be two levels, since in a cubic environment or-
bitals dxy, dxz, dyz (t2g) are equivalent and orbital dx2−y2

is, in fact, also equivalent to orbital d3z2−r2 (symme-
try eg). One of the levels should comprise orbitals dxy, dxz ,
dyz (t2g) and be therefore triply degenerate, and the other
orbitals dx2−y2 and d3z2−r2 , and be doubly degenerate.
This is observed in Figures 13−17 (the state at −7.85 eV
is of s and not of d character), with the difference that
states t2g split off in two (also three-fold) degenerate levels
due to spin-orbit interaction (Fig. 10 shows that the band
split is larger for Ag than for Pd and, in turn, for Pd larger
than for Rh). The t2g and eg degeneracy is lifted outside Γ .
The band dispersions fully comply with the considerations
above. The bands with symmetry eg have the largest dis-
persion along the ∆ axis (Γ -H line) because its k-vectors
are aligned with the direction to which the orbitals of the
eg states point. They are narrow along the Γ -N-P-Γ line
because its k-vectors are directed off the 〈100〉 direction, to
which the orbitals of symmetry eg point. In contrast, the
dispersion of the bands with symmetry t2g is weaker along
the k-line parallel to the 〈100〉 direction (i.e. the Γ -H line)
than along the Γ -N-P-Γ line because the k-vectors of the
former line are aligned with the 〈100〉 direction which is
furthest off the direction into which the orbitals of t2g sym-
metry point (i.e. 〈110〉).
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Fig. 13. The same as in Figure 8 but now with dx2−y2 char-
acter represented by the size of the circles.

6.1.3 Atomic density along crystallographic directions

It can also be observed that bands t2g have larger disper-
sion than bands eg: along the k-lines where the bands have
the largest dispersion (the Γ -N line for bands t2g and the
Γ -H line for bands eg) as well as along the k-lines where
the bands have the smallest dispersion (the Γ -H line for
bands t2g and the Γ -N-P-Γ line for bands eg) the disper-
sion of bands t2g is larger than of those whose symmetry
is eg. This can be explained by taking into account not
only the cubic symmetry but also the atomic density along
the various crystallographic directions. In the bcc struc-
ture the densest-packed direction is the 〈111〉 direction.
Consequently, the strongest bonds in the bcc metals occur
in this direction (see Fig. 11) and the weakest – furthest
off it, i.e. in the 〈100〉 direction (Fig. 11). Because or-
bitals t2g point into a direction (〈110〉-direction) which is
much closer to the 〈111〉 direction, than that of orbitals eg,
which point exactly into the direction of the weakest bonds
between atoms (the 〈100〉 direction), the bands with sym-
metry t2g should, in general, exhibit stronger dispersions
than bands with symmetry eg, exactly as shown in Fig-
ures 13−17. The weaker bonds in the 〈100〉 direction re-
sult in bands eg being flat along the N-P line, because only
the N-P line is aligned with the direction of the weakest
bonds (i.e. 〈100〉). This is especially the case for the states
with symmetry dx2−y2 which make up a flat band along
N-P line situated at the Fermi level. The states with char-
acter d3z2−r2 do not form a fully flat band there because,
in contrast to orbitals dx2−y2 , orbitals d3z2−r2 also extend

Fig. 14. The same as in Figure 8 but now with d3z2−r2 char-
acter represented by the size of the circles.

Fig. 15. The same as in Figure 8 but now with dxy character
represented by the size of the circles.
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Fig. 16. The same as in Figure 8 but now with dxz character
represented by size of the circles.

a little into the (100) plane, thus pointing slightly off the
direction ([001]) of the weakest bonds.

Figure 18 shows the l- and m-resolved DOS of bcc Rh
at the optimum lattice constant. It clearly indicates that
the strong peak in the bcc DOS is made up of states
with symmetry eg, i.e. of states with character d3z2−r2

(Fig. 18d) and especially with dx2−y2 (Fig. 18c), confirm-
ing the considerations above. Figure 9 shows that the flat-
ness of the bands with the predominant eg orbital char-
acter is for Rh strongly correlated with the appearance
of ferromagnetic order. The ferromagnetic band split is
stronger (see Fig. 9) for bands with the eg orbital char-
acter in the vicinity of the Fermi energy, where they are
narrow (Figs. 13–17). Clearly, the tendency to ferromag-
netic band split is enhanced for these bands by a smaller
orbital overlap which narrows the bands.

Summarising Section 6.1, we found that the strongest
peak of the bcc DOS is produced by the flat bands of
symmetry eg lying mostly on the N-P line. The origin of
these bands was found to be the translation symmetry
of the cubic structure which makes the bands with sym-
metry eg narrow along a k-line whose k-vectors are off
the 〈100〉-directions, e.g. on the Γ -N-P-Γ line. This hap-
pens because the magnitude of the wave function between
atoms does not change significantly with varying k-vectors
of this k-line. In addition, the bands are flatter along the
N-P line because of the highest abundance of symmetry
points on it and because the N-P direction is aligned with
the 〈100〉 direction, which is the direction of the weakest
bonds in the bcc crystal. According to a recent itinerant
theory of magnetism, a ferromagnetic state is stabilised

Fig. 17. The same as in Figure 8 but now with dyz character
represented by the size of the circles.

at low enough temperatures, if an almost dispersion-less
band exists within broad ones [94]. Thus the flat band
touching the Fermi energy plays a leading role in the for-
mation of the magnetic state.

6.2 The origin of the strongest peak in hcp Pd

In a recent letter [31] we identified the flat bands which
raise the DOS at the Fermi energy of hcp Pd as lying at the
surface of the hcp bulk Brillouin zone in the stacking se-
quence direction (〈0001〉), which is the most remote direc-
tion from the densest-packed atomic chains 〈11̄00〉 of the
close packed structure. Blaha, Schwartz and Dederichs [95]
have shown that the bonds in the stacking sequence direc-
tion are for hcp transition metals weaker than those within
the close-packed hexagonal (0001) planes. This happens
also for Ti which has the hcp c/a ratio of 1.58, which
is smaller than the ideal one of c/a � 1.63. For hcp Pd
the hexagonal c/a ratio was calculated [96] to be even
larger (1.68) than the ideal one. In general, it has been
found that the hcp phase of those metals whose fcc phase is
stable with respect to hcp, is characterised by an increased
axial ratio [97]. First principles calculations performed at
conserved atomic densities [72] lead to the conclusion that
the total energy minimum of hcp Au and Ag occurs at the
c/a value of 1.67. For hcp/dhcp Pd and hcp Cu films grown
on W(100) [27, 28, 31] and for hcp/dhcp Pd and Au, and
hcp Cu and Ag films grown on Nb(100) [27, 28, 31, 32, 98]
we measured the c/a value of ∼1.67 and an atomic nearest
neighbour distance (lattice constant a) smaller by ∼ 1%,
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Fig. 18. l- and m-resolved DOS of bcc Rh at the optimum lattice constant obtained from paramagnetic DFT calculations using
the LSDA approximation with spin-orbit coupling included. a) s-projected DOS. b) p-projected DOS. c) dx2−y2 , d) d3z2−r2 ,
e) dxy, f) dxz and g) dyz contributions to the DOS.

which leaves the atomic density unchanged. This reflects
the fact that atomic bonds in the hcp phase modifica-
tion for metals whose natural phase is fcc (e.g. for Pd)
are stronger within the (0001) atomic plane and weaker
in the stacking sequence direction (i.e. [0001]). Thus for
hcp/dhcp Pd the strongest peak positioned at the Fermi
energy is produced by flat bands lying along the M-L line
on the surface of the hcp BZ in the [0001] direction where
(i) in the momentum space there exist a high abundance
of symmetry points and (ii) in the real space the bonds
between atoms are the weakest.

7 Structural phase transition

In the preceding sections the relation between the mag-
nitude of the DOS at the Fermi energy of late transition
metals and their crystal structure was analysed. We will
now investigate the implications of a high density of states
at the Fermi energy of those metals for the instability of
their lattices. This will be done to the end of exploiting the
possibility of producing substrate supported or even free-
standing, thick films of Pd and Rh with the bcc and/or
hcp crystal phase.

7.1 The influence of a flat band at the Fermi-energy
on the crystal phase stability

The existence of an electronic flat band at the Fermi level
plays a crucial role in a metal becoming a ferromagnet or

a superconductor [91,99–105]. However, the resulting high
electronic density of states at the Fermi energy (N(EF ))
corresponds rather to a relatively unstable situation since
already weak perturbations, for example very small vol-
ume fluctuations, may trigger off the rearrangement of a
large number of electrons [106]. The system avoids such
an instability by a spin anisotropy or by a phase tran-
sition to a more stable crystal structure. As is shown in
Figure 9, the bands which are narrow in the vicinity of the
Fermi energy have the largest ferro magnetic band-split.
In the case of Co, a metal isoelectronic to Rh, Liu and
Singh [107] pointed out that a factor that contributes to
the instability of bcc Co is its high electronic density of
states at the Fermi energy. It was found [108] that at low
temperatures the leading term in the electronic entropy
is proportional to N(EF ). Thus, a high N(EF ) existing
for a particular structure would very probably raise the
so called ‘band-energy’ to a high value thus producing a
maximum at the energy surface. In an approximation, the
band energy which can be defined as the sum of the va-
lence band eigenvalues up to the Fermi energy [109], is
the leading term [109] in the total energy of a crystal in
the sense that it determines the phase stability of many
transition metals [109, 110]. In the following we will esti-
mate the stability of the crystal phases of transition metals
analysed in this work on the basis of their band structures
alone.

It is possible for a material to become unstable with
respect to vibrational modes before it becomes elastically
unstable [111]. In some respects an elastic instability can
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be thought of as a phonon instability with a vanishing
wave vector [111]. Dynamical stability can be estimated
by looking at the phonon dispersion relations; a large elec-
tronic density of states at the Fermi level often induces rich
structure in the phonon dispersion relation curves [112].
In particular, transition metals possess unusual structural
properties, which have their origin in the dominant influ-
ence of d valence band electrons on their electronic struc-
ture. They often exhibit pronounced phonon anomalies as
a result of complex Fermi-surface geometries in conjunc-
tion with a strong electron-phonon coupling [99–105,113].

An anomaly in the phonon dispersion relation is man-
ifested by a changed slope (i.e. a strongly damped or
even negative slope) of the phonon dispersion curve. A
damped slope produces ‘soft-phonon modes’ which signify
incipient lattice instability [108,112,114,116–129]. More
importantly, a negative slope in the phonon dispersion
curves can, in addition, lead to ‘negative’ phonon frequen-
cies making the lattice spontaneously unstable because
stability requires the energy of phonons to be positive for
all the wave vectors in the Brillouin zone. A phonon that
lowers the energy of the crystal will grow in amplitude
until the structure is driven to a new stable state [111].
Such phonons can produce displacements necessary for a
martensitic phase transition [130].

Phonon anomalies in connection to martensitic trans-
formations have been the topic of numerous experimental
and theoretical studies [108,112,114,117–129,151–158].
It has been known for a long time now that phonon anoma-
lies can be predicted from the band structure alone [114].
It is commonly believed that the origin of these anoma-
lies lies in the coupling of lattice vibrations to electronic
states near the Fermi energy [115, 118]. Early investiga-
tions [112, 113, 118, 126, 128] explained the appearance of
phonon anomalies as a Kohn effect, which consists in a
strong coupling to electronic transitions between two al-
most parallel flat pieces of the Fermi surface and leads to
the nesting condition:

q + G = k′ − k (2)

where q is the phonon wave vector, k′, k lie on the Fermi
surface, and G is a reciprocal lattice vector of the analysed
crystal structure. It was shown that even less spectacular
broad and shallow anomalies observed in phonon spectra
can be traced back to a number of nesting vectors (q+G =
k′ − k) which cluster in a certain region of the Brillouin
zone [126]. Now, let us see how these considerations can
be applied to bcc Rh, which possesses a very high DOS at
the Fermi-energy.

7.2 The instability of bcc Rh

To be stable, a crystal has to satisfy some stability criteria.
For a cubic crystal the three stability criteria are:

C11 + 2C12 > 0, C44 > 0, C11 − C12 > 0 (3)

where Cij are the elastic constants [185]. The first relation
corresponds to the bulk modulus B = (C11 + 2C12)/3 and

the second and third one to shear constants [185]. The
elastic constants C44 and C11 − C12 are the trigonal and
tetragonal shear moduli C′ = (C11 − C12)/2, respectively.
The former gives the stability (or instability) of a cubic
crystal against a trigonal distortion. In a trigonal phase
transformation the cubic lattice is expanded or contracted
in the 〈111〉-direction in such a way that: (i) the atomic
volume remains constant and (ii) the six-fold symmetry
of the {111}) direction is preserved during the transfor-
mation [168, 172, 175]. A bcc lattice can be in this way
transformed into a fcc one, and vice-versa. The tetragonal
shear modulus determines the ability of a system to resist
a phase transformation by tetragonal distortions, during
which the cubic lattice is expanded in the 〈100〉 direction
with the atomic volume remaining constant. Let us see
now how the trigonal and tetragonal shear moduli can be
predicted for bcc Rh on the grounds of the band structure
alone.

In the preceding section we have shown that the domi-
nant contribution to the electronic density of states at the
Fermi energy comes for bcc Rh from flat bands positioned
around symmetry points P of the bcc BZ, in particular
along the P-N line. Let us see now how the crystal phase
stability of the hypothetical bcc structure of Rh can be
determined on the grounds of the topology of its Fermi
surface. Figure 7 shows the distribution of the P-N lines
in the momentum space. They constitute the cube marked
with dashed lines in Figure 7b. We observe that there are
many directions in which nesting vectors exist which con-
nect P-N lines and, in this way, parallel flat pieces of the
Fermi surface. Two of them: 〈100〉bcc and 〈110〉bcc deserve
special attention since they are high symmetry directions.

7.2.1 Fermi-surface in the 〈100〉bcc-direction

In the 〈100〉bcc direction the periodicity along the PN lines
of the bcc bulk BZ is half the periodicity of the BZ in that
direction (see Fig. 7b). Hence, in that direction the wave
vectors k’–k connecting flat pieces of the Fermi surface
(situated along the PN-lines of the bcc BZ) are equal to
half the reciprocal lattice vectors in the 〈100〉bcc direction:

(k′ − k)〈100〉bcc =
1
2
G〈100〉

bcc . (4)

Consequently, it follows from equation (2) that:

q〈100〉
bcc + G〈100〉

bcc =
1
2
G〈100〉

bcc , (5)

which further implies:

| q〈100〉
bcc | =

1
2
| G〈100〉

bcc | = (k〈100〉bcc )BZ . (6)

So, the topology of the Fermi surface of bcc Rh indi-
cates the existence of an anomaly in the phonon disper-
sion curve in the 〈100〉bcc direction (ΓH direction of the
bcc bulk BZ) at the zone boundary ((k〈100〉bcc )BZ). This
means that there should exists an anomaly in the phonon
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branch in the ΓH direction at the BZ boundary. The long-
wave mode of this branch corresponds to C44 [127], with
the related shear constant being the slope of the respec-
tive phonon-branch at q → 0. Since the topology of the
Fermi surface indicates the existence of an anomaly in
the phonon branch in the 〈100〉bcc-direction at the zone
boundary (H) and not at the origin (Γ), the trigonal shear
modulus C44 should be finite and positive. Consequently,
the lattice structure of bcc Rh should be stable against
trigonal deformations. This is also to be expected from
crystallographic considerations: along the trigonal trans-
formation path from bcc to fcc or from fcc to bcc the
lattice passes through a simple cubic structure. In such a
structure each atom lies on-top of the next-nearest neigh-
bours of the adjacent lattice planes. This raises the total
energy of the system, thus creating a high energy barrier
along the trigonal transformation path between the bcc
and fcc lattice [168,172,175]. In the following section two
transformation paths will be discussed which transform
the bcc lattice into close-packed ones (fcc or hcp) without
passing through an energy barrier.

7.2.2 Fermi surface in the 〈110〉bcc direction

The situation in the 〈110〉bcc direction is different than
that in the 〈100〉bcc-direction. The difference consists in
the fact that only in the former direction the periodicity of
the PN lines of the bcc bulk BZ is equal to the periodicity
of the BZ in that direction (see Figs. 7b, c). Hence, only
in the 〈110〉bcc direction the nesting vector is almost equal
to the reciprocal lattice vector in the respective direction.
By way of explanation, there exists a cluster of nesting
vectors in the 〈110〉bcc direction with the property:

(k′ − k)〈110〉bcc � G〈110〉
bcc . (7)

It follows from equation (2) that:

q〈110〉
bcc + G〈110〉

bcc � G〈110〉
bcc , (8)

and further:
q〈110〉

bcc → 0. (9)

Consequently, the phonon branch in the 〈110〉bcc direc-
tion should have an anomaly already at q → 0. This
anomaly implies a negative value of the related shear con-
stant. The shear constant related to the phonon branch
in the 〈110〉bcc direction is the tetragonal shear mod-
ulus C′ = (C11 − C12)/2 [127]. So, the existence of the
Kohn anomaly for bcc Rh in the 〈110〉bcc direction at
q → 0 suggests that the tetragonal shear modulus
C′ = (C11 − C12)/2 is unstable (e.g. negative). Indeed,
many calculations have shown that the shear elastic con-
stant C′ is negative for the bcc structures [183] of native
fcc or hcp metals [66, 67, 107, 159–177]. Moreover, there
are no energy barriers to prevent the bcc phase of na-
tive fcc and hcp metals from a lattice distortion toward
the fcc or hcp structure, the bcc phase being related to
a maximum (or at least to a saddle point) of the energy

surface [159,171,177]. The trend displayed by the energy
difference between the fcc and bcc crystal structures has
been found to be similar to that of the tetragonal shear
constant [109, 161]. Calculations of the phonon disper-
sion curves have shown that, indeed, for structures with
a negative tetragonal elastic constant C′ the correspond-
ing dispersion is imaginary [127]. In addition, it was found
for metals with native close-packed phases that the entire
T1(ξ, ξ, 0) mode of the bcc structure with the polarisation
along [11̄0] is unstable. The zone boundary mode of this
branch T[11̄0](1

2 ,
1
2 , 0) lies for these systems at the highest

‘negative’ frequencies. This phonon was studied in sev-
eral systems [105,108,112,119,121–123,127,128,178–181]
since T[11̄0](1

2 ,
1
2 , 0) together with a tetragonal shear con-

stant transform the bcc structure into the hcp one. The
negative bcc T[11̄0](ξ, ξ, 0) branch strongly lowers the free
energy along this transition path and obviously makes the
hcp minima fall below the bcc free energy [119]. We will
now briefly analyse the transformation path from the bcc
structure into a close-packed one (fcc or hcp).

7.3 The bcc to fcc tetragonal phase transformation
path

A negative shear modulus C′ makes the bcc lattice unsta-
ble against a tetragonal transformation into the fcc lat-
tice. Along this transformation path, also known as the
Bain transformation path, the cubic lattice is continu-
ously expanded (bcc to fcc transformation) or contracted
(fcc to bcc transformation) in the 〈001〉 direction, since
the volume per atom is kept fixed (see for example Paidar
et al. [182]). All intermediate structures encountered along
this path are tetragonal with the {001} lattice plane as
the basis. Consequently, a (001)-oriented bcc film will
transform into a (001)-oriented fcc one. The difference
between the two orientations is that the fcc(001) lattice
plane is much more densely packed than the bcc(001)
atomic plane. Here lies the reason why a pseudomorphic
film grown (in a phase modification [16]) on (001)-oriented
cubic substrates very often does not transform into its na-
tive (001)-oriented fcc or bcc phase: due to large differ-
ences between the inter-atomic distances in the fcc(001)
and bcc(001) planes, the native (001) atomic plane has
a very bad fit to the (001)-oriented substrate in the case
when the ps-film is in a crystal phase modification (bcc
for native fcc metals, or fcc for native bcc metals). The
epitaxial constraint imposed by the (001)-oriented sub-
strate on the growing film prevents the film from adopt-
ing the (001)-oriented native cubic phase. As a result,
the film finds another way of transforming its pseudo-
morphic structure into the native one. An example of
such a transformation is provided by the growth of Fe
(whose ground phase is bcc) on Cu(001). After some 5
to 10 pseudomorphic layers (i.e. with a fct(001) film struc-
ture) of Fe have grown, the film structure transforms
into the (011)-oriented bcc phase [19] and not into the
bcc(001) one. Now, the bcc structural modification of films
with the native close-packed (fcc or hcp) phase (e.g. Rh
and Pd) can be obtained by pseudomorphic growth on
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suitable (001)-oriented substrates [27]. Similarly to Fe on
Cu(001), pseudomorphic bcc(001)-oriented films [16] do
not transforms into the native fcc(001) phase via the Bain
transformation path either: instead they transform into a
(011)-oriented close-packed structure. However, the differ-
ence to the case of Fe is that the native phase of metals
like Rh and Pd is fcc. The fcc(011)-film orientation dras-
tically differs from the bcc(011)-film one. In the bcc(011)
orientation the densest-packed atomic planes (which are
the bcc(011) planes) of a film lie parallel to the surface,
whereas in the case of a close-packed (011)-film orienta-
tion they are the close-packed planes (which are (111) for
the fcc structure and the (0001) for the hcp structure, re-
spectively). The film lattice transformation from the pseu-
domorphic bcc(001) orientation into the (011) orientation
of the close-packed phase –which is hcp and not fcc– dras-
tically reduces the thickness limit of the pseudomorphic
bcc-phase, as will be shown below.

7.4 The bcc to hcp hexagonal phase transformation
path

There exists a crystal structure transformation path which
transforms the (001)-oriented bcc phase into a close-
packed one with only a minor change of the atomic density
in the atomic planes parallel to the substrate surface. This
transformation path is called the hexagonal path. It con-
nects the bcc and the close-packed lattices (e.g. fcc and
hcp). The transformation is a combination of an homo-
geneous deformation that preserves the atomic volume,
with the shuffling of (e.g. alternate) close packed atomic
planes (bct(110), fcc(111) or hcp(0001)) in (e.g. opposite)
directions [175,182]. Starting with the bcc phase, the ho-
mogeneous part of the transformation is a small contrac-
tion of the bcc lattice in the [001] direction by holding
the atomic volume constant. Upon such a transformation
the bcc(110) planes contract into hexagonal close-packed
ones (hcp(0001) or fcc(111)). Finally, sliding these atomic
planes in the [11̄0]bcc direction transforms the lattice into
an hcp or fcc one. As an example, a (001)-oriented bcc
(or bct) film (e.g. a pseudomorphic film) transforms into
a (110)-oriented fcc or hcp ((112̄0)) one. If the (001)-
oriented bcc (or bct) film is grown on a (001)-oriented
cubic substrate, the transformation of the film-structure
to the (110)-oriented fcc one has to surpass an energy bar-
rier. In the case when the deposited film transforms to the
hcp(110) structure the total energy continuously decreases
until it becomes equal to that of the hcp structure.

We can therefore conclude that:

1. the existence of an energy barrier in the bcc(001)–
fcc(110) transformation in substrate-supported films
with native close-packed phases [186]

2. the absence of an energy barrier in the bcc(001)–
hcp(110) and in the bcc(001)–dhcp(110) film transfor-
mation [175,186]

3. the existence of an energy barrier in the fcc–hcp and
in the fcc–dhcp transformation path [186,189]

are the main reasons why films with the native fcc phase
grow in the hexagonal (112̄0) orientation on suitable sub-
strates over a large thickness (over 100 MLs) without
transforming back into the native fcc phase even when the
films are stripped off their substrates [27, 186–188]. The
orientation relationship between hcp and dhcp films and
(001)-oriented (e.g. bcc) substrates is: (112̄0)[0001]film ‖
(001)[110]substrate (see the Figs. 5 and 6 in Hüger and
Osuch [33]). The four-fold symmetry of the (001)-oriented
substrate surface induces two sets of orthogonal (112̄0)-
oriented film domains. In contrast to the (001) substrate
surface, which has four-fold symmetry, the (112̄0)film sur-
face has only two-fold symmetry. Although the orthogo-
nal [110]- and [11̄0]-directions of the (001) substrate sur-
face are equivalent, the orthogonal directions [0001]film

and [11̄00]film are not. Therefore, those films grow on
bcc(001) substrates in two orthogonal domains with rect-
angular shapes [27,194,195]– one with [0001]film ‖ [011]bcc

and [11̄00]film ‖ [01̄1]bcc and the other with [0001]film ‖
[01̄1]bcc and [11̄00]film ‖ [011]bcc [27, 28]. This domain
topology is maintained in films stripped off the substrates
and is the main cause of the stability of the hcp and
dhcp phase in the stripped films [186].

7.5 Enlarging the thickness of Rh films
with the bcc crystal structure

We notice that the [001]-direction of a ps-film grown
on (001)-oriented cubic substrates lies perpendicularly to
the film surface and thus along the direction where the
substrate has the smallest influence on the film struc-
ture. This allows the film to relax its crystal structure in
the surface normal direction by performing small shears
required to transform the dense-packed bct(110)-planes
(which stay perpendicular to the film surface) into close-
packed ones ((111) for a fcc-stacking sequence or (0001) for
an hexagonal-stacking sequence). Once the close-packed
planes are formed (perpendicularly to the surface) they
automatically slide from the bct stacking sequence (the so-
called unstable stacking sequence [135,136,191–193]) into
the hexagonal one [186]. Atomic simulations have shown
that this transformation into an hcp-stacking sequence
(and not into a fcc-stacking sequence [172,184,185]) can-
not be prevented, not even by the existence of a sub-
strate [172]. Thus, in contrast to the growth of films with
the native fcc phase in the (112̄0)-oriented hcp struc-
ture, the growth of such films in the bcc structure
is restricted to only first few monolayers (up to 2 or
9 monolayers) [27, 186]. This critical thickness of the
pseudomorphic growth can be enlarged by suitable sur-
factants [18, 24, 196, 198–201] which block the shift of
ps bct(110) planes into hcp positions [196] or by imposing
a suitable epitaxial constraint on the both interfaces in
multilayers [35,184,196,197,202–209]. The suppression of
the hcp(112̄0) growth also occurs in the presence of oxy-
gen. Kim et al. [24] have demonstrated that a submono-
layer coverage of oxygen can double the ps-range of Co
deposited on Fe(001). Later studies [200, 201] confirmed
this result by finding that the presence of oxygen causes
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a delayed onset of the bct-hcp transition. Very likely
oxygen impedes the shift of the compressed bct(110)
planes (the hexagons) into hcp positions thereby preserv-
ing the pseudomorphic phase. This phase can also be en-
larged by the effect of two suitable interfaces in super-
lattices [35, 184, 196, 197, 202–209]. In the case of Rh, the
growth of Rh films in Rh/V(001) superlattices would be
a suitable way of obtaining thicker (e.g. at least 10 ML
thick) bcc (or bct) Rh films by ps growth. Of course, the
development of the (112̄0)-oriented hexagonal structure
(after the ps-growth) is a serious limitation to achieving
relatively thick bcc (or bct) Rh films on suitable sub-
strates. The effect of a surfactant (e.g. oxygen [24,200,201]
or of alumina [196,202,203] (Al2O3)) on the stability and
thickness of these films could be an interesting topic of a
further study of this epitaxial system.

Summarising:
(i) the instability of the bcc structure for metals with
close-packed native phases implies the difficulty of grow-
ing thick films in the bcc phase modification,
whereas
(ii) the metastability of the hcp structure in metals with
the native fcc phase and the special epitaxial relationship
of (112̄0)-oriented hcp films grown on (001)-oriented cu-
bic substrates are responsible for the stability of the hcp
phase in thick (i.e. over 100 monolayers thick) films even
when the films are stripped off their substrates.

8 Conclusions

First principles self-consistent DFT calculations with spin-
orbit coupling included show that the driving force behind
the induction of ferromagnetic order at the equilibrium
lattice constant in bulk Rh and Pd is crystal symmetry
change. The change of symmetry from fcc to bcc for Rh
and from fcc to hcp/dhcp for Pd induces ferromagnetism
in bulk Rh and Pd at the optimum lattice constants with
the magnetic moments of 0.26 µB, 0.16 µB, 0.11 µB per
atom for bcc Rh, hcp Pd and dhcp Pd, respectively. Due
to the spin-orbit interaction, the spin anisotropies induce
small orbital moments of 0.06 µB, 0.07 µB, 0.05 µB per
atom for bcc Rh, hcp Pd and dhcp Pd, respectively. They
enlarge the total magnetic moments to 0.32 µB, 0.23 µB,
0.16 µB per atom for bcc Rh, hcp Pd and dhcp Pd, respec-
tively. The appearance of ferromagnetic order in bcc Rh
and hcp/dhcp Pd is strongly related to the position of the
Fermi level at the top of the strongest peak of the bcc- and
hcp/dhcp-induced DOS, respectively. Flat bands lying at
the surface of the respective Brillouin zones were found to
be at the origin of these peaks.

The origin of these flat bands was found to be the
translation symmetry of the bcc lattice which makes
the Bloch states with symmetry eg narrow along the
Γ − N − P − Γ line of the bcc BZ. This happens be-
cause the magnitude of the wave function between atoms
does not change significantly with varying k-vectors of this
k-line. As a consequence, the energy does not change sig-
nificantly along this line either because k-vectors on this
line are not aligned with the 〈100〉 directions into which

orbitals eg point. In addition, the high abundance of sym-
metry points on the N-P line and its alignment with the
direction of the weakest bonds (〈100〉) in a bcc transition
metal makes the band with symmetry eg flat along this
line. This flat band induces a strong sharp peak in the
bcc DOS. The d-band occupancy of Rh locates the Fermi
level exactly at the top of this sharp peak inducing ferro-
magnetic order in bcc Rh at the optimum lattice constant.

The strongest DOS peak situated at the top of the va-
lence band induced by the hcp or dhcp crystal structure
of a d-band metal is caused by flat bands which lie at the
surface of the hcp BZ. These flat bands are along k-lines
aligned with the [0001] direction where (i) in momentum
space there exists a high abundance of symmetry points
(the M-L-line) and (ii) in the real space the bonds be-
tween atoms are the weakest. The latter happens because
the stacking sequence direction (the [0001] direction) is
the most remote direction from the close-packed hexag-
onal atomic planes (0001) of the close-packed structure.
The d-band occupancy of Pd places the Fermi energy at
the top of the strongest peak induced by the hcp/dhcp
structure. This makes the DOS at the Fermi energy high
enough to induce ferromagnetic order in hcp/dhcp Pd at
the optimum lattice constant.

We have shown on the grounds of the electronic struc-
ture alone– in particular on the grounds of the structure
of the Fermi surface– that the bcc crystal structure of Rh
is stable along a trigonal transformation path, but unsta-
ble along a tetragonal or hexagonal one. We pointed out
that, in general, the metastable nature of the hexagonal
(hcp/dhcp) structure of metals with the native fcc phase
(e.g. Rh and Pd) and the special epitaxial relationship of
(112̄0)-oriented films grown on (001)-oriented cubic sub-
strates (e.g. Rh and Pd on W(001)) lead to the stability
of the hexagonal structure in thick films even when they
are stripped off their substrates. In contrast, the bcc and
bct phase modifications of metals with the native close-
packed structure are not metastable and hence they can
not form free standing films. Even the epitaxial constraint
of a suitable substrate can not stabilise them over a large
film thickness.
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144. P. Tóledano, G. Krexner, M. Prem, H.-P. Weber, D.P.

Dmitriev, Phys. Rev. B 64, 144104 (2001)
145. H.Th. Hesemann, Thesis (Max-Plank Institute für

Metallforschung, Stuttgart, 2002)
146. M.H. Bocanegra-Bernal, S.D. De la Torre, J. Mater. Sci.

37, 4947 (2002)

147. A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl.
Phys. Lett. 80, 1746 (2002)

148. P.-G. de Gennes, K. Okumura, Europhys. Lett. 63, 76
(2003)

149. D.R. Trinkle, R.G. Hennig, S.G. Srinivasan, D.M. Hatch,
M.D. Jones, H.T. Stokes, R.C. Albers, J.W. Wilkins,
Phys. Rev. Lett. 91, 025701 (2003)

150. K. Bhattacharya, Microstructure of Martensite (Oxford
Univ. Press, Oxford, 2003)

151. J.D. Axe, D.T. Keating, S.C. Moss, Phys. Rev. Lett. 35,
530 (1975)

152. Y. Noda, Y. Yamada, S.M. Shapiro, Phys. Rev. B 40,
5995 (1989)

153. B.L. Zhang, C.Z. Wang, K.M. Ho, D. Turner, Y.Y. Ye,
Phys. Rev. Lett. 74, 1375 (1995)

154. O. Dubos, W. Petry, J. Neuhaus, B. Hennion, Eur. Phys.
J. B 3, 447 (1998)

155. U. Pinsook, G.J. Ackland, Phys. Rev. B 59, 13642 (1999)
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